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A numerical implementation of fully relativistic MHD in divergence
form for the purpose of shock computations is presented. We illustrate
the implementation on the coplanar Riemann problem for MHD. The
computations are performed using a pseudo-spectral method. Brio and
Wu recently demonstrated the existence of compound waves in classi-
cal MHD. We find that compound waves persist in relativistic MHD.
Two limiting cases are considered numerically: a limit in which the
velocities become nonrelativistic, and a limit in which the longitudinal
magnetic field approaches zero. A comparison is made with the results
of nonrelativistic MHD, and with the singular case of zero longitudinal
magnetic field. © 1993 Academic Press, Inc.

1. INTRODUCTION

Numerical simulation of hydrodynamics and magneto-
hydrodynamics has become increasingly important in the
field of astrophysics. Interpretation of the structure, origin,
and long time evolution of astrophysical flow 1s approached
today succesfully by large scale numerical simulations using
nonrelativistic codes {181. Much of these numerical studies
is on the morphology of jets, which show intricate patterns
of shocks. Radio-astronomy has provided us with detailed
images of these flows on the kiloparsec scale. Lind [12]
emphasizes that these simulations are to be regarded as
qualitative investigations. In particular, he expresses cau-
tion in the interpretation of numerical simulations of jets on
the parsec scale, where they are believed to be highly
relativistic.  Extension of numerical simulations to
relativistic hydrodynamics has received much attention by
many authors (see, e.g, [15, 16, 18, 13]}. Furthermore,
magnetic fields are believed to be present in these flows.
Magnetic fields are important in radiative phenomena
{Phinney [8]) and in the structure of astrophysical flow
[8, 18 ]. Numerical simulation of relativistic MHD has been
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considered most notably by Evans and Hawley [22] and,
recently, by Dubal [19].

In [25] we presented a divergence formulation of locally
adiabatic relativistic MHD for the purpose of numerical
simulation. We showed that MHD in divergence form
allows for numerical simulation of the problem of wave
breaking in one dimension up to the moment of breaking.
The purpose of this paper is to demonstrate that MHD in
divergence form also allows for numerical simulation of
more complicated MHD flow with shocks. To this end we
seek

{(a) MHD in divergence form whose standard jump
conditions across surfaces of discontinuity are the physical,
enthalpy preserving jump conditions across shocks;

(b) A numerical method for MHD in divergence form
for the purpose of shock computations;

(¢} A one-dimensional shock-tube problem which
features many of the possible MHD shocks.

The first itern will be obtained by a rewriting of the result
from [257. The resulting system is equivalent to the former
whenever the flow 1s continuously differentiable.

Several illustrative examples will be computed. Using a
pseudo-spectral method with explicit time-stepping on a
uniform grid we further show the effectiveness of the
divergence formulation of MHD. Brio and Wu [17]
computed the coplanar Riemann problem in classical,
nonrelativistic MHD. In this paper, we will study the same
problem for relativistic MHD. A pseudo-spectral method is
employed which is tested against an analytical solution in a
Riemann shock-tube problem in the singular himit of a
purely transverse magnetic field. In [17] Brio and Wu
showed the existence of a compound wave (a shock wave
with attached to it a rarefaction wave of the same family) in
nonrelativistic MHD. These results have recently also been
computed by Stone ef al. [247]. We will find that compound
waves persist in relativistic MHD as a natural continuation
of Brio and Wu’s nonrelativistic result.

MHD in divergence form is a constraint-free formulation
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based on taking constraints as conserved quantities [25].
We remark that this method of treating constraints may
have applications to other systems of equations. The results
in this paper can be taken as demonstration of this method
an sich in the particular context of MHD.

In Section 2, MHD is formulated in divergence form
which aliows for the computation of shocks. Our pseudo-
spectral method is outlined in Section 3, together with a test
on the Riemann shock-tube problem with transverse
magnetic field. The relativistic generalization of Brio and
Wu's coplanar Riemann problem is presented in Section 4.
Two limits are considered numerically: a limit in which the
velocities become nonrelativistic, and a limit in which the
longitudinal magnetic field approaches zero. Particular
attention is given to see that our numerical implementation
of relativistic MHD retains nonrelativistic MHD in the
limit of low velocities, low pressures, and low magnetic field
energies.

2. FORMULATION OF THE PROBLEM

The problem of numerical stmulation of relativistic MHD
flow in the presence of shocks is considered by formulating
the equations of MHD in divergence form. This approach
has been motivated by the computational methods used in
nonrelativistic computational fluid dynamics. In divergence
form the equations of MHD are amenable to numerical
implementation by shock capturing schemes, provided that
the jump conditions that follow from a weak formuilation
are the physical jump conditions of conservation of energy
and momentum, baryon number, and those of Maxwell’s
equations. The theory of MHD in covariant form has been
discussed by many authors (see, eg.,, {26, 3, 1]) and the
equations are briefly introduced here.

The fluid is considered to be perfect in that viscosity and
thermal conductivity are neglected. A perfectly conducting
fluid with velocity four-vector u* in the presence of an
electromagnetic field with magnetic field four-vector, 779, is
described by a stress-energy tensor of the form

Tabzpﬂaub'FP*gabﬁhahb, (1)

where p = rf +h* and P* = P+ h’°/2 with r the proper rest
mass density, fthe specific enthalpy, and P the hydrostatic
pressure. The gquantities r, P, and f are related to the
entropy, S, and the temperature, T, by dP=rdf +rT dS.
The specific enthalpy ftakes the form f'= 1 + (y/(y —~ LW P/r
for a fluid with polytropic equation of state, P= Kr’, and
polytropic index, y. In regions where the fluid variables
are continuously differentiably, these quantities satisfy
the consetvation of energy and momentum, Maxwell’s
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equations, conservation of baryon number, and local
adiabaticity (ideal MHD),
vV, T% =0,
V. (uln*1) =0,
e(U) :=uh =0, (2)
V. (ruy=10Q,
vV, S=10,

respectively. Here, ¢(U)=0 constitutes a constraint equa-
tion. With ¢(U/)=0 the vector field #, represents the
magnetic field in the rest frame of the fluid, and (2) uniquely
defines the evolution of the variables U= (4% 4%, r, P). In
view of constraint equation ¢(U)=0, (2) forms a partial
differential-algebraic system equations, whose numerical
implementation is difficult in particular in the presence of
shocks. Evidently, the constraint ¢{U) =0 is to be satisfied
in numerical simulations for a solution to be an MHD
solution.

The equations of ideal MHD, including the flux-freezing
constraint (2) can be written in constraint-free divergence
form as [25]

V, T4 =0,

V. (Rt + g e(U)} =0,
V. (ru®)=0, ©)

V. (rSu1=0.

In the case of (3) the jump conditions across surfaces of
discontinuity that follow from a weak formulation (see,
e.g., [6]) vield strict adiabaticity, because of the last two
equations. For this reason, we rewrite this system (3)
such that these standard jump conditions associated with
it contain the entropy increasing jump conditions across
shocks. In regions where the flow is smooth, we have

THEOREM 2.}. The equations of locally adiabatic ideal
MHD including the flux-freezing constraint can be stated as

v, Te =0,

V. {uleh®T + g*tc(U)} =0,
V. (ru®) =0,

Voi(uu +1)$°) =0,

V, Ft= (4)

where {7 is any prescribed time-like vector field. This system
is equivalent to (3) in regions where the flow is continuously
differentiable. The standard jump conditions across surfaces
of discontinuity for this system are those of conservation of
energy-momentum, baryon number, and Maxwell’s equations.
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Note that Maxwell’s equations imply the identity

u, V, T = u, V(rfus® + Pg™). (5)

Consequently, the equation of continuity and the thermo-
dynamic relation dP=r gf — r T dS yield
u, V, T = flru®)V, u%/2 + (1 + 1){(u°V ) P
+ Tu*(ru”) V5. (6)

It follows that conservation of either one of the relations

w+1=0,

(7}
u'V,5=0
implies the other. Thus, for smooth flow the two systems (3)
and (4) are equivalent. Furthermore, the jump conditions
across a surface of discontinuity with normal one-form, v,
as follows from a weak formulation of (4) are

[T v, =0,
[ulen®d 4 gec(U)] v, =0, ®)
[ra®] v, =0,

[ u, + 1}] §v, =0.

Here, [¢] =(g)" — (g}~ denotes the jump in g across the
shock. Evidently, jump conditions (8) contain conservation
of energy-momentum and baryon number. It is shown in
[25, Proposition 3.1], that ¢(U):=u‘h,=0 is preserved
across shocks. Finally, the last equation in (8) ensures that
also the condition uu, -+ 1 = 0 is preserved, provided that ¢
is not tangential to the shock surface, £°v_#0. This
establishes the theorem.

We remark that {7 =const. yields a quadratically non-
linear system in the hydrodynamical limit to which Roe’s
linearization (see [21]) can be applied in a straightforward
manner, When A% =0, we obtain

V. (ww’ +5p)=0,

Y
V,i{s——L—plwi=0,
Al=55) v}

Vol(wiw, +57 87} =0,

(9)

with characteristic determinant (cf. Proposition 5.1 in
[257),
D= (éava)(wava)(al(wava)z - a?_(vava)): (]0)

where a, = (2/(y— 1))(3p—s) and a,= ({(y/(y— 1)) p-+ 5} wew,
+ (s~ (py— 1)) p) s> Here, wo= /1" s=./f, p=
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P/\/aﬁ and v, is a one-form, Thus, Roe’s linearization yields
a linear Riemann solver in terms of six null vectors which we
have found can readily be implemented. However, a Roe
solver for MHD is expected to be rather complex and, by
similar arguments, possible in analytic form only wheny =2
as tn {17]. Therefore, we will not elaborate on this further
here.

A pseudo-spectral method is used for all our computa-
tions. This method is first applied in a Riemann shock-tube
problem with purely transverse magnetic field for a fluid
with y = 3 in view of an analytical solution in this case. We
will also apply this method to Bri and Wu's coplanar
Riemann problem in classical MHD.

3. DESCRIPTION OF THE METHOD

In astrophysical flow, one of the most prominent features
of shocks is heating. Shock heating is responsible for emis-
sion in violent phenomena such as supermovae [9, 14],
accretion flow [207, and jets [18, 12]. Ini shocks relativistic
effects can be significant. Mathematically, relativistic effects
appear in the relativistic Rankine-Hugoniot relations for
relativistic hydrodynamics (Taub [77) and relativistic
MHD (Lichnerowicz [ 4]) as singular perturbations of their
nonrelativistic counterparts. This is examplified by the
absence of a bound on the ratio on the proper restmass den-
sities (restmass densities in fluid restframe) across shocks, as
oppased to the familiar bound (v + 1)/(y — 1) for the density
ratio across shocks (Bazer and Ericson [ 111]) for polytropic
fluids in the nonrelativistic case. This will be illustrated
below. In relation to the change of entropy across shocks
this indicates that relativistic effects can be dramatic in the
emissivity by shocks in astrophysical flows.

In this section, we describe a pseudo-spectral method
which enables us to study shock computations in our for-
mulation of MHD (4) with explicit time stepping on a grid
X <Xy < - <xy, N=2M with uniform gridspacing
dx=x,, | —x;=1/N. In a specific space—time split {4) may
be written in Cartesian coordinates (x*)= {1, x*) in flat
space-time as

3. F" (e, XY+ 8,F*(1, x*}=0. (i1}
In all our computations £° = (2,)". Differentiation of discon-
tinuous fluxes is be removed by taking first the integral of
the system with respect to the spatial variable x, We will use
this system for each time step. These considerations have led
us to set up a numerical scheme, whose derivation consists
of three steps. These steps are

Step (a). Write the quantities F'* as a sum of their mean
and variational parts

FA(L, x) = Filin)+ F{*(1, x), (12)
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such that | F{*(z, x)} dx = 0. The system of MHD equations
thus becomes

3, FiNt, X} + 8 F3(1, x) =0,

(13)
dF A (t)/dr = 0.

Thus, the mean vatue F3* = (F**> of F** is time invariant.
We now proceed with the first half of the equations above.

The quantities F{* have zero mean. This allows us to
consider the integrated quantities (F“)* {1, -),

(Fi')* (t+dex)=[ Fife+ anydy,  (14)

of Fi*(t,-). This integration can be performed efficiently
using the fast Fourier transform. Note that the quantities
(F"*)* are continuous. These quantities must satisfy

FAFY* (1, x)+ FA(1, x) =0, {15)
where we have used the assumption that F** vanishes at
infinity.

Step (b).
method:

Time evolution is performed using the leapfrog

(FIAV* (14 A1, x) = (FP)* (1 — A1, x)
— 241 F(1, x) + O{{40)®). {16)

F'{1, x) is now obtained {rom (F*)* (¢, x) by differentia-
iion. When using central differencing, the leading error term
involves the third derivative of (F{")* {1, x), and, therefore
the second derivative of (F{*){z, x). Such implicit viscosity
can be kept minimal by performing central differencing with
Richardson extrapolation:

FA(14 41, x) = (FY + A(FAY* (14 41, x)

+ O((4x)%). {17)
Here, the Richardsen extrapolator, 4, is given by
Aft, x)= (44, f(1, x)— 45, f(1, x))/3 {18)

with A4, f(1, x)=[f(t, x+ k) — f(t, x—h)])/2h.

Step {c). The scheme becomes iterative when using
Newton’s method to update the family of unknowns U com-
mensurate with the new values F™{¢ + At, x). The Newton’s
iterations have been carried out with an error criterion of
1.D-07 on the densities F'. Consequently, the errors in the
constraints #?+1=0 and ¢, :=u‘h.=0 are kept in the
order of 1.D-06 in all computations.
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In the computations of strong shocks, this scheme vields
excessive overshoot. This can be reduced by starting each
time step with two times oversampling using an interpolating
by

Slx,, 1) = (—fle_ )+ wfxd+wflx, )

~ f(xi 22/ (2w = 2). (19)
Thus, F7* is defined on a grid with intermediate grid points
Xy < X< o <X € Xy L X1 € <Xy < Xygoa
Step (a) and Step (b) are carried out on this finer grid, while
the last step (c) is applied to F'# on the original, course grid
X, <Xx,< --- <x,n only. This numerical implementation
will be used in all our computations,

Note that Step {(a) and Step (b) preceded by interpolation
(19} result in linear operations. The scheme outlined abaove,
therefore, is of the form

(FOm T =S ((FAYy" =Y =241 8, (F*™. (20)
Here, §,. and &,, are linear operators on functions on the
(coarse) grid {x,}, and m denotes the mth time step. The
subscript w reflects the parameter dependence in (19), We
remark that S, is a smoothing operator which bears a
strong relation to, but is much weaker than, Lanczos
smoothing (see, e.g.. [23, 27 for Lanczos smoothing). With
w =9 interpolation (19} 1s second order, while in the limit
as w goes to infinity, it reduces to a linear interpolation.
Finite w thus allows a compromise between accuracy and
smoothing.

3.1. A Test Problem

We will compute a 1D relativistic Riemann shock-tube
problem with purely transverse magnetic field in flat space-
time. The problem setting will be in the context of the
coplanar Riemann problem for classical MHD by Brio and
Wu [177]. The fluid is assumed to be a monatomic gas with
polytropic equation of state,

P=Kr, (21)
relating the pressure, P, and the restmass density, r, with
adiabatic constant K and polytropic constant y. We have
taken y=32, in between its ultrarelativistic limit, %, and
Newtonian limit, 3. Note that this lies below the limit
established by Taub: y < 3 [7]. The adiabatic constant, K, is
taken to be 3, uniformly throughout the fluid. We compute
the time evolution of fluid on the unit interval, 0 < x <1,
which is initially at rest and possesses an initial jump dis-
continuity, [r)=r;g . at x=3. Furthermore, the
magnetic flux density, k£ = #/r, where h is the magnetic field
strength, also suffers an initial jump at x = 1. In the exam-
ples presented below we have taken k=1 for x <3, and
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k =k for x > 1. Numerically, the initial conditions at x =}
are chosen to be the mean of the left and right states.

A detailed error analysis can be given using a comparison
solution obtained by the method of characteristics. Recall
that a solution to a Riemann shock-tube problem can be
described in three parts: increasing with x we find

(1) asimple wave moving into the uniform state at the
left. When K=1%, y==%and k=1, and using »“ = (cosh(1),
sinh(4), 0, 0) the state of the fluid can be expressed analyti-
cally as [25]

At+dlr)=J,
d(r) = 4 sinh ~!(r1/4),
A =tanh(5}/4 — J/4),

(22)

where 0 <4< 4,, the value of the Riemann invariant J is
given by ¢(r,.q ), and A denotes the characteristic velocity;

{2) A uniform state connecting the region with the sim-
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pie wave solution and the contact discontinuity. Here, the
fluid is described simply by A=4,, r=r;,and h=k,r,=r,
with the continuity condition %, + ¢(r;) = J;

{3) A uniform post-shock state in between the contact
discontinuity and the shock. Here, the state of the fluid is
described by A=4,, r=r;, P=P,, and h=k,r, with the
jump condition [F(U)] v,(x)=0 at the shock, where
v¥(u) = (sinh y, cosh u, 0),

For any initial jump [r] this nonlingar problem in
(A4, ra, P53, t) can be solved by Newton’s method.

A test case is considered with zero initial velocity and
longitudinal magnetic field A~ left state r =1, P, =2,
(A"}, =1 and right state rp=0.125, P,=0Q1, (h')=
0.0625. The initial hydrodynamical data, except for P, =2,
are those in Sod’s shock-tube problem [57, following Roe
f21] and Brio and Wu [177]. The solution 1s shown in Fig. 1
for n=256. The exact solution of this problem is given by
the curve with sharp corners in each of the solution panels.
Here, the smoothing was done with w = 12. The evolution of
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Numerical solution to shock-tube problem with purely transverse magnetic field in the pseudo-spectral method with w=12. The

discretisation is 256 points and 512 time steps with 4¢/4x =0.10. Convergence of the solution is shown in the lower right panel. Here, averages over the
mid one-third of the uniform postshock region (grid points 159 through 164) are compared with the exact solution. The absolute value of the resulting,
relative discrepancy is displayed for the velocity (curve A} and restmass density (curve B) at each time-step.
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the error with time step m is shown in the lower right panel.
Concentrating on the approximation of the shock jump
conditions, averages over the mid one-third of the uniform
postshock region are compared with the exact solution, and
the resulting, relative discrepancy is displayed for the
velocity (curve A)and the proper restmass density (curve B).
At m = 516 the average is over grid points 159-164. Clearly,
the resnlts show proper convergence to the exact solution.
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We have also studied the effect of smoothing on the
quantities in the postshock region. Various values of w,
n=At/Ax have been considered. Generally, smoothing
increascs with w and decreases with n. Smoothing by w
reaches its maximum at w=20 and minimum at w=_§,
Table I shows results for various w in the case n =512 at
m = 1032 time steps with n=0.10. Oscillations appear with
w =8, a small overshoot remains at the shock when w = 10,
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FIG. 2. Numerical solution to shock-tube problem with relativistic shock strength in the pseudo-spectral method with w= 12. The discretisation is

2048 points and 4000 time steps with 4:/4x=10.10.
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TABLEI

Comparison of Numerical Results by Pseudo-Spectral Method
for Yarious Smoothing Values of w with the Exact Solution for the
Riemann Problem Shown in Fig. [ with Discretization n = 512

Psendo-spectral

Quantity w=§ w=10 w=[2 Exact

r 0.2695 0.2692 0.2687 0.2693

U 04574 0.4562 0.4559 0.4566

H 0.1511 (0.1513 0.1511 0.1513

P 0.3299 0.3288 0.3284 0.3292

K 2.3587 2.3534 23574 2.3554
Nete. The number of time-steps is 1032 with siep-size A1/4x =0.1.

The numerical values are averages over the mid one-third of the postshock
region, grid points 159 through 164.

and no spurious phenomena are present when w= 12,
Clearly, the results in Table I are remarkably independent
of w. Smaller time step sizes #<0.05 give additional
smoothing, while 0.10 < 5 < 0.15 yields essentially spurious
free resuits and larger # yield overshoot at the shock.

A strong shock computation is shown in Fig 2. The
initial data are again with zero initial velocity and
longitudinal magnetic field h*, but now with left state
ro=10, P, =3r** = 2108, (h*), = 10 and right state r, = 1,
Pr=025, (") =10.25. Stabilization has been obtained by
w=12. Note that the jump in the restmass density across
the shock, 5.125 (numerically; 5.140 exact), slightly exceeds
the classical bound (y + 1)/(y — 1) = 5. Note that although
the error is decreasing much slower, there is stiil con-
vergence,

We conclude that for modest shock strengths suitable
choices of the parameters w and 4 are 10<w<12 and
0.10 <7 <0.15 with leapfrog time stepping. Strong shock
computations can be performed taking w large, w>i2.
In all our computations, the approximation of the jump
conditions across shocks shows proper convergence.

4. A COPLANAR MHD RIEMANN PROBLEM

We have computed the coplanar Ricmann problem for
relativistic MHD by application of the pseudo-spectral
method to (4). In each computation, initially the velocity u®
and the transverse component A7 are zero throughout and
h.=h% while r=0.125, P=0.1¢% h,= —¢ at the right
side of the discontinuity at x=1and r =1, P = 1&%, h,=gat
the left side of the discontinuity. We will consider two
limiting cases of this Riemann problem. For ¢» 1 the
resulting fluid flow has velocities approaching the speed of
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light, while for ¢ < 1 the flow has low velocities, pressures,
and magnetic field energies (with respect to the restmass
energy density, r) and the solutions should approach those
of the nonrelativistic equations. Our choice of scaling keeps
B = P/h* =const. as ¢ is varied, As a check of our pseudo-
spectral method {as opposed to the divergence formulation)
we have also used it to solve the classical, nonreiativistic
equations solved by Brio and Wu (Eqs. (16)-(22)in [17]).
Our low ¢ and classical results are compared with those of
{177 in Table II, For this reason, we have chosen y=2 to
facilitate comparison with results from Brio and Wu. In the
coplanar Riemann problem, the magnetic field and the
velocity are continuous across contact discontinuities
whenever the longitudinai magnetic field, 4., is nonzero.
In contrast, #°'=0 does allow these quantities to be
discontinuous across contact discontinuities {as in Fig. 1).
Thus, 4,=0 with discontinuous magnetic field across a
contact discontinuity is a singular limit in MHD. We will
illustrate this numerically by consideration of A" = {; and
ho =0

Figures 34 show the result for e=1, 4'9=2 and
h'® =1, respectively, and Fig. 5 shows the result for
¢=0.05 A" =3 Velocities and the transverse magnetic
field are depicted twice in Figs. 34, once as physical
quantities U=u*/u', V=wY{u', H =v'h’ —u*h’ in the
laboratory frame and once as tensor components i =u",
v=u", and 4. The curves of the physical quantities U, V,
H” and the tensor components u*, u*, o, respectively, coin-
cide to within 0.5 % (in the order of the thickness of the lines
of the figure) when ¢ = 0.05. This is the nonrelativistic result
of Brio and Wu and a comparison follows below, In each
case, the solution consists of a fast rarefaction wave moving
to the left, a slow compount wave, a contact discontinuity,
and a slow shock and fast rarefaction wave moving to the
right (see {17] for the discussion in nonrelativistic MHD).
In Fig. 3 the compound wave appears most clearly in the
restmass density and the tensor component «*. Figures 3
and 4 show a pronounced difference between the physical
and four-vector components of the tensors. Thisisdue to a
jump in the Lorenz factor, I', to I'=1.428 in Fig. 3 and to
I" = 1.458 in Fig. 4. This jump in I attenuates the jump in
the physical quantities. Furthermore, the rarefaction wave
in the compound wave in Fig. 3 is of much smaller
amplitude than in Figs. 4 and 5; this rarefaction wave
decreases in amplitude with k. and with velocity. Finally,
notice that the heating in the compound wave is negligible
compared to the heating in the shock traveling to the right.
This follows from the minute jump in K at x = 0.49, x = 0.50,
x=048 and the O(1) jump in K at x=0525, x=0.515,
x=10.535in Figs. 3, 4, and 5, respectively. This suggests that
compound waves should they occur in astrophysical flow
are not likely to contribute to detectable radiation. We
remark that for fluids with y = 2 the numerical results show
the same behavior.
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4.1. Limit of Small h®

The problem in the limit of small 4 is shown in Figs. 6
and 7 for A= {5 and £'"=0, respectively. The other
parameters are as in Section 4 with ¢=1. Note that as
h'® — 0 the transverse velocity has constant magnitude, but
is captured in an ever thinner sheet bounded by two slow

shocks. When #2 =0, the sheet vanishes, but the spike in P
remains. The transverse flux therefore becomes propor-
tional to &, in this limit, as the jump in &, approaches finite
limits across each of the two shocks. Note that total
pressure P* = P + h*/2 becomes continuous as #% vanishes.
Next consider the limit 4% = 0. Since there is a change of
sign in A, across a contact discontinuity approximation of
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all quantities by smooth functions while keeping the total
pressure P* continuous necessarily requires a large spike in
P at the point where /2, changes sign, i.e., goes through zero.
Thus, transverse MHD is a singular limit when 4, changes
sign across a contact discontinuity. As #”! becomes finite,
two waves bifurcate from the contact discontinuity. In this
problem these waves are slow shock waves. We remark that

when y =13 the singuiar nature of this problem is also
reflected numerically in a small, erroneous jump in the
velocity across the contact discontinuity. The continuity of
the total pressure, however, is strictly maintained. We have
also considered the small £ limit on the test problem in
Section 1. This yields a bifurcation of the solution near the
contact discontinuity into a slow shock and a slow
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rarefaction wave. The result is a fast rarefaction wave
followed by a slow shock traveling to the left and a fast
shock followed by a slow rarefaction wave traveling to the
right.

4.2, Nonrelativistic Limit

In the limit of nonrelativistic velocities, pressures, and
magnetic field energies, our numerical implementation of

MHD in divergence form yields nonrelativistic results for
the coplanar Riemann problem as shown in Fig. 5. To see
this, we will compare these results with those obtained from
the equations of nonrelativistic MHD. The difference
between the four-vector quantities u, v, A* and physical
quantities U, ¥, and H”, respectively, is less than 0.5%
when ¢ =0.05, as mentioned before, while about 2% when
£¢=0.10 {in particular, in U, u and ¥, v at the right side of
the compound wave, where ' is largest). As ¢ — 0, the equa-
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tions of relativistic MHD reduce to their non-relativistic
form [17] which for the coplanar problem amount to

r,+(rU), =0,
(rU),+ (rU* 4+ P*). =0,
(V) + UV —-H.H,).=0,
(H), +(H,U-H, V), =0,
E+{(E+PHYW-H(HU+H, }.=0,
where P* =P+ (H?+ H?)/2 and H,_ is constant.

(23)

581/105/2-12

The solution to these equations (23} obtained using our
pseudo-spectral is shown in Fig. 8. We have estimated the
left state before the shock, denoted by subscript L, and the
right state at the tail of the rarefaction wave, denoted by
subscript R, of the compound wave by taking averages over
five points and compared these with data from Brio and Wu
[17] and from Stone ef al. [24]. This is listed in Table IL.
Note that agreement is typically better than 0.5 %, but there
is a 1% discrepancy in the proper restmass density on
the right side, r,. We find that this is very sensitive to
smoothing (by taking w— 20 and/or smaller time steps
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TABLE 11

The Low & Limit of the Relativistic Coplanar Riemann
Problem for MHD

Quantity e=1 ¢=0.10 ¢=005 ¢=0 Ref [17] Ref [24]
ry 0.5417 0.6674 06722 06762 06763 0.664
re 0.6503 0.6862 06844 06919 06963 0.701

U, je 0.4680 06457 0.6427 0.6369 0.6366 0.662
Upgle 0.2839 0.5920 06002 06007 0.5997 0.597
Vife —831BE~02 —0.2357 —0.2370 —0.2351 —0.2333 —0.248
Vafe —0655¢6 —1.545 —1.576 —1585 —1.578 —138
H, /e 0.5619 05756  0.5791 05835  0.5849 0.576
Hp/e —03414  —0.5234 —0.5316 —0.5344 —0.5341 —-0.536
P, jet 0.2939 04461 04528 04580 04574 0.443
Pgfet 0.4437 0.5115 05152 05156 0.5133 0.509
Nore. Averages of the left and right constant states across the

compound wave for various £ and the classical case. Data from Bric and
Wu and from Stone ef af. are listed here for comparison.

AtfAx < 0.05). This may be due to the smoothing at the
contact discontinuity, which our method spreads out over
about 10 grid points. Interestingly, the appearance of some
oscillatory behavior at the shock shows that the non-
relativistic formulation (23} is more difficult to handle with
our pseudo-spectral method than the relativistic formula-
tion. This is probably due to a difference in the way conser-
vation of energy is formulated. We have taken A¢/dx=0.5
in the low ¢ relativistic computations and A¢/A4x=0.15 in
the computation on (28). The spurious oscillations in
classical MHD disappear when taking smaller time steps
{At/Ax < 0.05); however, this introduces smoothing which
increases the discrepancy in 7 g, as mentioned before.

We conclude form Table IT that our numerical implemen-
tation of MHD in divergence form shows proper limiting
behavior towards nonrelativistic MHD as the velocities,
pressures, and magnetic field energies become small.

5. DISCUSSION

The shock computations in this paper show that MHD
formulated in divergence form allows stable and accurate
numerical simulations. In view of astrophysical applica-
tions, emphasis has been given to the computation of the
shock heating. With low discretizations the results are
particularly accurate for shocks of intermediate strength.
The power of the divergence formulation of MHD is
brought about by

(cl) convergence of the approximations of the shock
jump relations;

(c2) obtaining both relativistic and nonrelativistic
results in MHD in divergence form with the same numerical
implementation;

MAURICE H. P. M. YAN PUTTEN

{c3) obtaining the above with explicit time-stepping on
a uniform grid.

The pseudo-spectral method is a particular form of a
smoothing method (see Eq. (20}). The smoothing varies
with parameter w and the step size At/Ax. The effect of
smoothing most clearly appears in shocks and contact dis-
continuities. In the problems studied in this paper we find
that contact discontinuities are resolved best with modest
smoothing at the cost of some overshoot at shocks, while
essentially spurious free results may be obtained with
larger smoothing at the cost of smearing out contact
discontinuities over relatively more points. Of course,
the particular application at hand determines the optimal
amount of smoothing.

We wish to emphasize that the divergence form of MHD
in the limit of zero magnetic field yields a divergence form of
relativistic hydrodynamics. In view of the results above, this
formulation may be competitive with other formulations for
relativistic hydrodynamics for the purpose of numerical
simulation.

Our computations show that compound waves persist in
relativistic MHD. Brio and Wu [17] expressed concern as
to whether the compound wave in their computations is
physical or a mere artifact of numerical simulation. They do
s0 in view of the slow shock involved being an intermediate
shock. We wish to express that in the context of the
coplanar Riemann problem, the results of Wu [10], Brio
and Wu [17], Stone et al. [24] and those contained in this
paper lead us to believe that intermediate shocks should be
considered natural features in numerical simulations.
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